1. Introduction

Raising to Object (RTO) refers to a phenomenon in which a semantically and thematically embedded element appears to surface outside of the embedded clause and exhibits characteristics typical of matrix objects, in terms of case marking, agreement, and binding. Studies have shown that putative RTO constructions in different languages exhibit considerable cross-linguistic variations with respect to (i) the structure of the embedded clause, (ii) the actual position of the “raised” phrase (henceforth XP), (iii) restrictions on the phrase inside the embedded clause that is co-referential with XPs (henceforth YPs), and (iv) how the relationship between XP and YP is established (e.g., Massam 1985; Bruening 2001; Polinsky and Potsdam 2001; Alboiu and Hill 2013). This paper analyzes apparent cases of RTO in Formosan languages: Puyuma (1a), Amis (1b), and Seediq (1c).

(1) a. ma-ladram=ku kan Atrung [dra m-uka i Arasip ec].
 ‘I know (about Atrung) that she went to Arasip.’

b. ma-fana’ kaku ci Lisin-an [Ø tayra i Kalingku ec].
 ‘I know (about Lisin) that she went to Kalingku.’

c. kela-un=mu ka Ikung [Ø m-usa Ø Skangki ec].
 ‘I know (about Ikung) that she went to Skangki.’

As will be shown in this paper, despite the superficial similarities evident in (1), RTO in these three Formosan languages diverge in two important regards. First, RTO in Amis and Seediq requires the YP inside the embedded clause to be an absolutive (ABS)-marked phrase, while such a restriction is absent in Puyuma RTO. Second, the XP-YP relation obeys islands in Seediq RTO, while the same relation is island-insensitive in Amis and Puyuma RTO. An obvious question is where these variations come from.

In this paper, we argue that the similarities and differences among RTO in these three languages can be accounted for if they are analyzed as instances of embedded left-dislocation that utilize independently motivated strategies to establish the relation between the left-dislocated phrase (the XP) and the CP. Following Landau (2011), we argue that in RTO, a CP and an XP may establish their relation in three different ways. First, the relation between a saturated (i.e., propositional) CP and an XP may be established pragmatically through the aboutness condition (2a), which is what we propose to be the case in Puyuma RTO. Alternatively, an XP-CP relation may be established via co-indexation

*Victoria Chen, University of Hawai‘i at Mānoa, ychen6@hawaii.edu. Shin Fukuda, University of Hawai‘i at Mānoa, fukudash@hawaii.edu. This project is supported by funding from the Department of Linguistics at University of Hawai‘i and the Linguistics Institute of Academia Sinica. We thank Robert Blust, Kamil Deen, Ying-chin Lin, Diane Massam, William O’Grady, Yuko Otsuka, Masha Polinsky, and the audience at WCCFL 33 and AFLA 22 for comments and suggestions on this study. Our sincere thanks to our consultants: Min-ying Sun, Chung-yi Tsai [Puyuma], Chin-hua Wu-Tseng, Wan-sung Lin [Amis], Yu-ju Chu, Chiu-kai Tai, and Yu-hsia Lin [Seediq].

1Abbreviations: ABS=absolutive, AGR=agreement, AGT=agent, AV=actor voice, C=complementizer, DF=definite, ERG=ergative, ID=indefinite, IRR=irrealis, LK=linker, LOC=locative, LV=Locative voice, NEG=negation, NMZ=nominalizer, OBL=oblique, PERF=perfective, PL=plural, POSS=possessive, PV=patient voice, SG=singular.
of the XP and a null operator (Op) in [Spec, CP] (e.g., Anagnostopoulou 1997). As argued by Landau (2011), CPs with an operator (i.e., “predicative CPs” in Landau’s term) can be divided into two types: one that involves a base-generated Op (2b), and the other that involves an A’-moved Op (2c). We argue that Amis RTO involves a base-generated Op (2b), while Seediq RTO involves an Op movement (2c).

(2) a. \(\text{V}_{\text{MATRIX}} \text{XP} + \text{[CP]} \) via the aboutness condition [Puyuma RTO]
 b. \(\text{V}_{\text{MATRIX}} \text{XP}_{i} \text{[CP Op}_{i} \text{ pronoun},]} \) [Amis RTO]
 c. \(\text{V}_{\text{MATRIX}} \text{XP}_{i} \text{[CP Op}_{i} \text{ <t_i>]} \) [Seediq RTO]

If the proposed analysis is on the right track, the data from three Formosan languages reveal that closely related languages may utilize slightly different mechanisms that are independently available to realize what can be descriptively characterized as RTO constructions. Importantly, however, RTO in none of the three languages involves actual movement of the XP out of the CP, thus avoiding violations of the Phase Impenetrability Condition and improper movement configuration.

In what follows, we first present the core data in Section 2. In Section 3, we propose our analysis of the basic structure of RTO across the three languages as involving a finite CP with a base-generated left-dislocated XP that adjoins to it. Section 4 presents our account for the differences among RTO constructions in these languages, as summarized in (2). Section 5 discusses the implications of the proposed analysis for RTO cross-linguistically, and concludes the paper.

2. Similarities and Differences in RTO in Puyuma, Amis and Seediq

Puyuma, Amis, and Seediq are three Philippine-type Formosan languages that belong to three different Austronesian primary branches (Blust 1999). They are all predicate-initial, and exhibit what can be described as an Absolutive as unique constraint, i.e., every clause must possess one and only one absolutive-marked phrase. Table 1 summarizes the mapping between case markers and different thematic roles of arguments in the RTO data to be discussed in this paper.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Patient/Theme</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor voice</td>
<td>(AV)</td>
<td>[ABS]</td>
</tr>
<tr>
<td>Patient voice</td>
<td>(PV)</td>
<td>[ERG]</td>
</tr>
<tr>
<td>Locative voice</td>
<td>(LV)</td>
<td>[ERG]</td>
</tr>
</tbody>
</table>

Table 1: Case pattern in RTOs across Puyuma, Amis & Seediq

2.1. Similarities

2.1.1. Fully productive RTO with finite CP complements

RTO across the three Formosan languages is associated with knowledge/perception verbs (e.g., know, see, dream, hear, forget, fear) and finite CP complements. The finite CP analysis is built on the observation that the embedded clauses of RTO are fully compatible with different aspect markers and voice markers, unlike infinitives (control and restructuring complements) in the same languages, which disallow aspect markers and voice markers other than A V. Additionally, finite CPs and RTO complements in Puyuma carry an overt complementizer, which never appears inside infinitives (Table 2). According to our fieldwork, RTO in all three languages is fully productive and compatible with all CP-taking verbs.

<table>
<thead>
<tr>
<th>Finite CPs/RTO complements</th>
<th>Control/Restructuring infinitives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect markers</td>
<td>✓</td>
</tr>
<tr>
<td>Unrestricted voice type</td>
<td>✓</td>
</tr>
<tr>
<td>*Overt complementizer</td>
<td>✓ (Puyuma)</td>
</tr>
</tbody>
</table>

Table 2: Morphosyntactic constraints in types of complementation across the three languages

2.1.2. The matrix behavior of the XP

In all three languages, XP behaves like a matrix object in terms of case-licensing and reflexive binding. The case status of an XP is always determined by the appropriate matrix case licensor and presents no case-connectedness effect, as shown in (3a)-(3c). The XP is thematically identified with the absolutive argument of the embedded clause, yet bears Oblique (OBL) case under a matrix AV verb.
(3) a. ma-ladram=ku
kana ngia̱wa
[dra karatr ec](ABS) kana suan].
AV-know=1SG.ABS DF.OBL cat [c <AV> bite ec(ABS) DF.OBL dog]
‘I know (about the cat) that it bit the dog.’

b. ma-fana’
kaku ci Sawmah-an
[Ø mi-sakilif ec(ABS) ci Kulas-an].
AV-know 1SG.ABS PN S-OBL [c AV lie ec(ABS) PN K-OBL]
‘I know (about Sawmah) that she lied to Kulas.’

c. me-*isug=ku
limin-Ø
[Ø siipaq huling=mu ec(ABS)].
AV-fear=1SG.ABS I-OBL [c <AV> beat dog=1SG.POSS.(OBL) ec(ABS)]
‘I fear (about Imin) that she will beat my dog.’

In addition, when XPs are anaphors, they are obligatorily bound by the matrix external argument. In RTO sentences with a reflexive XP (4)-(6), the reflexivization relation can only be bound by the matrix subject ((4b), (5b), and (6b)) and never by the embedded subject. As a result, RTO with a reflexive XP always receives a different interpretation from its non-raising counterparts ((4a), (5a), and (6a)).

(4) a. ma-tiya
i Kisaw
[dra tu=satra’-ay kan Siber kantaaw].
AV-dream SG.ABS K [C 3.ERG=slap-LV SG.ERG S himself.ABS]
‘[Kisaw dreamt that [Siber, slapped himself]].’

b. ma-tiya
i Kisaw taytaaw
[dra tu=satra’-ay kan Siber ec].
AV-dream SG.ABS K himself.OBL [C 3.ERG=slap-LV SG.ERG S ec]
‘[Kisaw dreamt that [Siber, slapped him]].’

(5) a. ma-lemed
ni Kulas
[Ø ma-palu ni Mayaw cingra].
PV-dream ERG K [C PV-beat ERG M himself.ABS]
‘[Kulas dreamt that [Mayaw, beat himself]].’

b. ma-lemed
ni Kulas cingra
[Ø ma-palu ni Mayaw ec].
PV-dream ERG K himself.ABS [C PV-beat ERG M ec]
‘[Kulas dreamt that [Mayaw beat him]].’

(6) a. spi-an
Ø Walisi
[Ø siipaq Watan, ka heya nanaka].
dream-LV ERG W [C <PV> beat Watan, ERG ABS himself ki]
‘[Walisi dreamed that Watan slapped himself] ’.

b. spi-an
Ø Walisi ka heya nanaka
[Ø siipaq Ø Watan, ec].
dream-LV ERG W ABS himself ki [C <PV> beat ERG W ec]
‘[Walisi dreamed that [Watan, slapped himself]].’

2.1.3. The absence of reconstruction effects

In all three languages, the XP in RTO shows no reconstruction effect. As shown below (7)-(9), when a simple CP complement involves a quantifier subject and a possessive direct object, a bound variable reading of the possessive direct object obtains. Therefore, in (7a), the referent of kantu walak ‘3.Poss.OBL child’ depends on the referent of its binder taynaynayan ‘all mothers’. In contrast, if the possessive direct object is “raised” and becomes an XP (7b), the bound variable reading is no longer available. Hence, the possessive XP can only receive a specific interpretation. Under (7), for instance, the XP can only refer to a specific set of children, i.e., ‘I know that all mothers love their children’.

(7) a. ma-ladram=ku
[dra sagar kantu walak na taynaynayan].
AV-know=1SG.ABS [c like AV 3.Poss.OBL child DF.ABS all.mothers]
‘I know that all mothers love their children.’

b. ma-ladram=ku
kantu walak
[dra sagar ec] na taynaynayan].
AV-know=1SG.ABS 3.Poss.OBL child [c like AV ec] DF.ABS all.mothers]
‘I know that all mothers love their children.’

(8) a. ma-lemed aku
[Ø maemin ma-palu nuna wawa ku wacu nira].
PV-dream 1SG.ERG [c all PV-beat that.ERG child ABS dog 3SG.POSS]
‘I dream that all children, beat their dogs.’

b. ma-lemed aku
ku wacu nira
[Ø maemin ma-palu nuna wawa ec].
PV-dream 1SG.ERG ABS dog 3SG.POSS [c all PV-beat that.ERG child ec]
‘I dream that all children, beat their dogs.’

(9) a. kela-un=mu
[Ø qelu-un bi de-bubu ka laqi=daha].
know-PV=1SG.ERG [c love-PV very all.mothers ABS child=3PL.POSS]
‘I know that all mothers love their children.’

b. kela-un=mu
k a laqi=daha
[Ø qelu-un bi de-bubu ec].
2.2. Differences

Although the similarities described above, RTO constructions in the three languages diverge in two important regards: (i) restriction on the YP and (ii) sensitivity to islands.

2.2.1. Amis/Seediq vs. Puyuma: The ABS-only constraint on the YP

First, Puyuma RTO differs from that in Amis and Seediq in that RTO in the latter two languages requires the XP to be identified with the embedded absolutive argument, while such a restriction is absent in Puyuma RTO. As shown in (10a) and (11a), Puyuma RTO allows the XP to be identified with an embedded ergative or oblique argument as long as it is definite, while in Amis and Seediq RTO ((10b-c) and (11b-c)), an XP identified with any non-absolutive element results in ungrammaticality.

(10) YP as an embedded oblique

a. ma-ladram=ku i Arasip, [dra m-uka ec₁ i Atrung]. PUYUMA
 ‘I know (about Arasip) that he knows the anecdote that Atrung went there.’

b. *ma-fana’ kaku i Kalingku [ðØ tayra ec₁ Ø-ci Lisin]. AMIS
 ‘I know (about Kalingku) that Lisin went there.’

c. *kela-un=mu i Skangki, [Ø m-usa ec₁ ka Ikung]. SEEDIQ
 ‘I know (about Skangki) that Ikung went there.’

(11) YP as an embedded ergative

a. ma-ladram=ku kan Isaw, [dra tu=trakaw-aw na ngiaw ec₁]. PUYUMA
 ‘I know (about Isaw) that he stole your cat.’

b. *ma-fana’ kaku ci Sawmah-an, [Ø ma-keter ec₁ kuna wacu]. AMIS
 ‘I know (about Sawmah) that she scolded that dog.’

c. *kela-un=mu ka Habi, [Ø ’uq-un ec₁ ka sari=su]. SEEDIQ
 ‘I know (about Habi) that she ate your taro.’

2.2.2. Seediq vs. Amis/Puyuma: The island-sensitivity of the XP-YP relation

Seediq RTO is distinct from RTO in the other two languages regarding its XP-YP relation’s sensitivity to islands. In Seediq, the XP-YP relation respects both complex NP and adjunct islands ((12a) and (13a)), while the same relation in Puyuma and Amis RTO is immune to these islands ((12b-c) and (13b-c)).
2.3. Section Summary

In sum, RTO constructions in Puyuma, Amis, and Seediq are similar in terms of (i) the finite CP status of their complements, and (ii) the lack of reconstruction effects with their XPs, while they diverge in terms of the case restriction on the YP and the XP-YP relation’s sensitivity to islands. Puyuma RTO is the most unrestricted, imposing no restriction on YP or the XP-YP relation. Amis RTO obeys the absolutive-only constraint on the YP, but shows no island-sensitivity of the XP-YP relation. Seediq RTO is the most restricted, as it is subject to both the absolutive-only constraint on the YP and island conditions. Table 3 summarizes the empirical observations presented so far.

<table>
<thead>
<tr>
<th>PUYUMA</th>
<th>AMIS</th>
<th>SEEDIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction effects</td>
<td>✕</td>
<td>✕</td>
</tr>
<tr>
<td>ABS-restriction on the YP</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Island-sensitivity</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Table 3: Similarities and differences in RTO across the three languages

3. Formosan RTO as a Case of Embedded Left-Dislocation

Based on the empirical observations discussed above, we present our analysis of the basic structure of RTO, according to which RTO constructions are instances of embedded left-dislocation. We first motivate the left-dislocated adjunct analysis for the XPs based on the similarities between XPs and base-generated left-dislocated phrases. We then present our account of the matrix object–like behavior of XPs.

3.1. Formosan RTO Involves a Finite CP with a Base-Generated Left-Dislocated Phrase

In the previous discussion (Section 2.1.1), we showed that RTO in the three languages involves a finite CP complement, based on the unrestricted aspect and voice marking and overt complementizer observed in the RTO complements. As for XPs, we propose that they are base-generated left-dislocated phrases adjoined to the embedded CPs, as in (14).

(14)
\[\begin{array}{c}
VP \\
| V \\
| CP \\
| XP \\
| CP \\
\end{array} \]

This analysis is motivated by the observation that XPs in Formosan RTOs share a number of similarities with base-generated left-dislocated phrases cross-linguistically, such as left-dislocated phrases in Niuean (Massam 1985) and Italian (Cinque 1990), external topics (as opposed to internal topics) in Mayan languages (Aissen 1992), and hanging topics in Greek (Anagnostopoulou 1997). As discussed earlier, XPs in Formosan RTO (i) lack reconstruction effects (2.1.3), and (ii) present no case connectedness effects (2.1.2). Both characteristics are typical of hanging/external topics cross-linguistically. RTO in Puyuma further provides an additional motivation for the base-generated left-dislocated adjunct analysis of XPs. As shown in Section 2.2, Puyuma RTO imposes no case restriction on the YP, nor does it exhibit sensitivity to islands. At the same time, however, it must satisfy the aboutness condition, i.e., the content of the CP must be “about” the referent of the XP, a constraint that is commonly observed between base-generated left-dislocated phrases and the clauses that follow them. As can be seen in the following example, the failure to satisfy the aboutness condition results in unacceptability in Puyuma RTO (15).

(15)
\[*\text{ma-tiya}=ku \quad \text{kan} \quad \text{Atrung} \quad [\text{dra} \quad \text{tr}<>\text{em}>\text{akaw} \quad \text{dra} \quad \text{paysu} \quad \text{i} \quad \text{Sawagu}] \]

('I dreamt (about Atrung) that Sawagu stole money.')
Based on these observations, we argue that XPs are base-generated left-dislocated adjuncts to the CP.

3.2. The Matrix Behavior of XPs

As discussed in Section 2.1, XPs in Formosan RTO exhibit matrix object-like behavior in terms of anaphora binding and case marking. In this subsection, we provide our accounts for these behaviors of XPs based on the proposed analysis of RTOs as embedded left-dislocations.

First, as already shown in ((4)-(6)), when XPs are reflexive pronouns, they are obligatorily bound by the matrix subjects. We argue that the reflexivization facts follow straightforwardly from the proposed structure of RTO in (14), according to which the XP adjoined to the CP is the closest DP c-commanded by the matrix subject. For concreteness, we adopt the A-chain analysis of reflexives proposed by Reinhart and Reuland (1993), which is based on the following definition of an A-chain.

(16) An A-chain, under its broadest definition, is any sequence of coindexation that is headed by an A-position and satisfies antecedent government; that is, each coindexed link, except for the head, is c-commanded (i.e., m-commanded) by another link, and there is no barrier between any two of the links. (693).

According to (16), if an XP is pronominal, it must be reflexivized, as it is the closest DP that the subject DP, i.e., the head of the A-chain, c-commands.

Second, as all the examples of RTOs in this paper have shown, the XP bears morphological case that would be borne by a direct object. We argue that such case marking of XPs follows from two independently motivated generalizations of case in Formosan languages. First, CPs are “case-licensed” in Formosan languages, i.e., CPs enter into an Agree relation with a case-licensing head in these languages. Second, as mentioned earlier, in Formosan languages, there must be one and only one ABS-marked phrase in a given clause. As will be discussed below, these two generalizations lead us to propose that the morphological case borne by XPs is a reflex of the case assigned to the co-occurring CP, i.e., the XP inherits the case that is assigned to the XP-CP constituent.

Empirical motivations for the first generalization come from the A’-extraction asymmetry that has been reported in several Philippine-type Austronesian languages. According to Chung (1991, 1994, 1998), in Chamorro, the extraction of a wh-phrase is accompanied by verbal agreement (“wh-agreement”) on the verb, which indicates the case status of the wh-phrase. In (18), the embedded verb has an infix <in>, which indicates that the wh-phrase extracted bears OBL case. In the same example, the matrix verb has a prefix um-, which corresponds to nominative case. That the only element that could bear nominative case in (18) is the CP motivates the argument that Chamorro verbs agree with CPs in terms of case.

(18) Hayi, um-istotba si-Juan [ec, ni m<in>ahalang i asagua-ña ec]? 'Who does it disturb Juan that his wife is lonely for?' (Chung 1994:14)

A similar proposal has been put forward for Tagalog (e.g., Rackowski and Richards 2005; Law 2014), as exemplified in the following Tagalog relative clause data:

(19) a. Gusto ko ang libro-ng [s<in>abi ni Fred [na b<in>ili ni Maria ec]].
 like 1SG ABS book-LK. [<PV.PERF>say ERG F [LK <PV.PERF>buyERG M ec]]
 ‘I like the book that Fred said that Maria bought.’

b. *Gusto ko ang libro-ng [nag-sabi si Fred [na b<in>ili ni Maria ec]].
 like 1SG ABS book-LK [AV.PERF-say ABS F [LK <PV.PERF>buyERG M ec]]
 (‘I like the book that Fred said that Maria bought.’) (Law 2014:4; glosses ours)
In (19a-b), the head of the relative clause *libro* ‘book’ is A’-extracted from the most deeply embedded clause. As is well known, A’-extractions in Tagalog impose the absolutive-only condition, i.e., only ABS-marked phrases can participate in it. However, although *libro* ‘book’ in both (19a) and (19b) is ABS-marked inside the most deeply embedded clause, only (19a) is grammatical. According to Rackowski and Richards (2005) and Law (2014), the crucial difference between the two lies in the fact that the voice of the intermediate verb *sabi* ‘say’ is PV in (19a), but AV in (19b). Hence, the most deeply embedded CP in the sentences in (19) can be analyzed as ABS-licensed by the PV-form of the verb *sabi* in (19a) but OBL-licensed by the AV-form of the same verb in (19b). This extraction asymmetry led to the following generalization:

(20) Only those CPs and DPs that Agree with a phase head on independent grounds (e.g., direct objects and complement clauses) are transparent for wh-extraction. (Rackowski and Richards 2005:582)

We argue that the same generalization applies to the three Formosan languages, although its effects are manifested slightly differently. As in Tagalog, A’-extractions in Puyuma, Amis, and Seediq obey the ABS-only constraint. Consider the following wh-questions from Amis:

(21) a. *cima ku [ka-tengil-an isu [ku fangcal-ay ec]]? AMIS
 ‘Who do you hear is pretty?’

b. *cima ku [ka-fana*(-an) ✓ isu/*kisu [ku fangcal-ay ec]]? AMIS
 ‘Who do you know is pretty?’

In (21a), the intermediate CP has the verb *tangil* ‘hear’ in non-A V form, which presumably makes the most deeply embedded CP ABS-licensed, similar to the Tagalog example (19a). As expected, the sentence is grammatical. (21b), on the other hand, involves the verb *fana* ‘know’ as the verb of the intermediate CP. Under normal circumstances, the verb *fana* is only compatible with AV structure, as in (22).

(22) a. ✓ *ma-fana'/fana'*-en/*-an kisu/*isu [Ø ma-ulah kaku ci Mayaw-an]. AMIS
 ‘You know that I love Mayaw.’

However, despite the fact that the verb *fana* ‘know’ normally takes an AV marker (22), in A’-extraction sentences like (21b), the same verb is observed to obligatorily co-occur with a non-A V nominalizer -an, indicating that the verb is functioning as a non-AV verb under extraction circumstances. We believe that this exceptional behavior of the verb under A’-extractions is due to the generalization in (20). Namely, if the verb behaved as it normally does, the most deeply embedded CP would be OBL-marked, hence an A’-extraction out of this CP would be impossible. Only if the verb in (21b) is non-AV-marked would the most deeply embedded CP receive ABS case and allow A’-extractions. This, in turn, supports the claim that CPs are “case-licensed” in Formosan languages.

Going from this generalization, we propose that (i) in Formosan RTO, XPs bear the case assigned to the co-occurring CP complement, and (ii) the XP and CP must form a constituent. Following these two proposals, we argue that the case-marking on the XP is a realization of the case assigned to the XP-CP constituent, as schematized in (23).

(23) Supporting evidence for proposal (ii) come from the following Puyuma data (24), where XPs are adjoined to a complex DP, rather than a CP complement.

2 The same pattern is observed in Puyuma and Seediq. Due to space limitations, only Amis data are presented here.

3 Importantly, the *ka*-prefix in (21a) serves as a PV marker, while that in (21b) serves as an AV marker, as evidenced by the different case statuses (ERG or ABS) of the external arguments introduced by the verbs in simple clauses.
In (24), the XP *Siber* is adjoined to the DP ‘the rumor [that he grew mangos].’ Importantly, both the XP *Siber* and the head of the DP *ngay* ‘rumor’ bear ABS case. According to the *Absolutive-as-unique* generalization which states that there can only be one ABS-marked phrase in a given clause, the XP *Siber* and the DP ‘the rumor [that he grew mangos]’ can only be analyzed as sharing the same Absolutive case assigned by the matrix clause. We argue that essentially the same process takes place in RTO, with an XP adjoined to a simple CP complement. The only difference between the situation of the complex DP and that of the CP complement is that the (abstract) case-status does not have morphological realization on CP complements. This motivates the analysis that an XP and a CP in RTO must form a single constituent and share the same Case.

4. Three Strategies to Establish the XP-YP Relation

Building on the analysis of the structure of RTO proposed above, in this section, we present our proposal for the micro-variation in RTO constructions in the three languages. We argue that the differences derive from three independently motivated strategies that the RTOs in these languages use to establish the relationship between the left-dislocated phrases (XPs) and CPs, as in (25).

(25) a. $V_{\text{MATRIX}} \ X_P + [\text{CP}]$ via the aboutness condition [Puyuma RTO]
b. $V_{\text{MATRIX}} \ X_P \ [\text{CP} \ \text{Op} \ \text{pronoun}_i]$ [Amis RTO]
c. $V_{\text{MATRIX}} \ X_P \ [\text{CP} \ \text{Op} \ <\text{t}>]$ [Seediq RTO]

4.1. Puyuma RTO: Propositional CP and the Aboutness Condition

As shown in Section 2, Puyuma RTO is distinct from RTO in Amis and Seediq in that the former imposes no syntactic restriction on the relation between XPs and CPs. Further, the XP-YP relation in Puyuma RTO is immune to islands. We propose that this is because the Puyuma RTO involves XPs with propositional CP complements, whose relationship is established pragmatically through the aboutness condition. In other words, the only requirement imposed on the XP-CP relation is that the content of CPs be “about” the referents of XPs.

(26) $V_{\text{MATRIX}} \ X_P \ [\text{CP} \ \text{YP}_i]$

Following previous studies, we assume the aboutness condition is what licenses the instances of left-dislocation–like phenomena which involve no gap/pronominal copy, such as *external topics* in Mayan (Aissen 1991), *hanging topics* in Greek (Anagnostopoulou 1997), “*major subjects*” in Japanese (Saito 1982; Kuroda 1986; Heycock 1994; among others), and *copy-raising without a pronoun* in English and Hebrew (Landau 2011). The aboutness condition is often satisfied via co-reference between an XP and a phrase inside the CP (YP), yet such co-indexization is not necessary. Therefore, Puyuma RTO is felicitous even when the XP does not refer to any phrase inside the CP as in (27).

(27) **ma-ladram=ku an milanang dra bira’** [dra u<a>ruma=yu] [Puyuma]
\(\text{AV}-\text{know}=1\text{SG.ABS when AV.be.yellow ID.OBL leaves} \ [\text{C} \ <\text{IRR}>\text{AV.be.back}=2\text{SG.ABS}] \)

‘I know that you will be back when the leaves turn yellow.’

4.2. Amis RTO: Predicative CP with a Base-Generated Null Topic Op in [Spec, CP]

Unlike Puyuma RTO, Amis RTO imposes the ABS-only requirement on YPs; namely, XPs must be co-indexed with an ABS-marked argument inside the CP ((10b) and (11b)). Unlike Seediq RTO and like Puyuma RTO, however, the XP-YP relation in Amis RTO can cross islands ((12b) and (13b)).

We argue that the two observed characteristics can be captured under the analysis that Amis RTO involves predicative CPs that have a base-generated null operator in [Spec, CP]. Importantly, this base-generated null operator is a topic that must be co-referential with an ABS-marked pronoun, which can be either covert or overt. This null topic operator in turn is co-indexed with the XP.

(28) $V_{\text{MATRIX}} \ X_P \ [\text{CP} \ \text{Op}_i \ \text{ABS-pronoun}]$
According to Landau (2011), the configuration in (28) accounts for the cases of left-dislocation and copy-raising that require the presence of a pronoun, as well as prolepsis constructions in languages like Madurese (Davies 2005). Under this analysis, the properties of Amis RTO follow directly from the properties of topics in Amis. While an Amis topic must be co-indexed with an ABS-marked phrase, this co-reference relation does not respect syntactic locality or islands. In (29a) below, the topic Ofad is co-referential with the ABS-marked pronoun cingra ‘he’ embedded inside the adverbal clause (which can be either null or overt). As can be seen, this co-reference “skips” the closer ABS-marked phrase, kaku ‘I’, and also crosses an adjunct island. In (29b), the topic Mayaw is co-referential with the ABS-marked pronoun cingra ‘he’ inside the complex DP sinpung ‘news’.

(29) a. 0-ci Ofad, tayra kaku i Busung, [anu pafl ci (cingra) takuwanan tu paysu].
 ABS-PN Ofa, AV.go 1sg.abs LOC B [if AV.give (3sg.abs) 1sg.abs OBL money]
 ‘Ofad, I will go to Busung if he gives me money.’

b. 0-ci Mayaw, ma-tengil aku [kuna sinpung [adada (cingra)]].
 ABS-PN Mi, PV-hear 1sg.erg [ABS.that news [av.be.sick (3sg.abs)]]
 ‘Mayaw, I heard the news that he is sick.’

Postulating the null topic operator inside the CP in Amis RTO, as in (30), hence accounts for both the ABS-only requirement imposed on YPs and the lack of island-sensitivity.

(30) ma-fana’ kaku ci Mayaw-an [kuna sinpung [Op. adada (cingra)]].
 AV-know 1sg.abs PN M-OBL, [ABS.that news [av.be.sick (3sg.abs)]]
 ‘I know (about Mayaw) the news that he is sick.’

4.3. Seediq RTO: Predicative CP with an A’-moved Null Operator in [Spec, CP]

Among the three languages’ RTO constructions, Seediq RTO is unique in that the XP-YP relation is island-sensitive ((12c) and (13c)). Like Amis RTOs, however, Seediq RTO imposes the ABS-only requirement on YPs ((9b) and (12b)). We argue that Seediq RTO exhibits these properties, as it involves a predicative CP and a null operator that A’-moves to [Spec, CP], as in (31).

(31) V-MATRIX XP1 [CP Op1 t1]

The structure in (31) offers a unified account for the ABS-only requirement and the island-sensitivity in Seediq RTO. As the construction involves an A’-movement, (i) the YP must be an ABS-marked phrase, as only an ABS-marked phrase can be A’-extracted, and (ii) the XP-YP relation cannot cross islands, as an A’-trace cannot be licensed with islands.

5. Conclusions and Implications

We have argued that RTO in the three Formosan languages are instances of embedded left-dislocation and that involve a finite CP and a base-generated left-dislocated adjunct, the XP. As such, they involve no derived matrix objects or raising out of CPs. We have also argued that the micro-variation observed in RTOs across these three closely related languages receives a unified account under the hypothesis that a CP can establish a relationship with a left-dislocated phrase in three different ways: (i) via the aboutness condition, (ii) via a base-generated null operator, and (iii) via an A’-moved null operator. If the present analysis is on the right track, RTO in the three languages provides novel support for Landau’s (2011) claim that a CP and a CP-external phrase may establish a connection via three different strategies.

The present proposal adds RTOs in Puyuma, Amis, and Seediq to the growing list of languages with RTO-like phenomena that do not involve movement out of finite CPs, including Niuean and Fijian RTO (Massam 1985), Malagasy RTO (Paul and Rabavololona 1998; Pearson 2005), Tsez long-distance agreement (Polinsky and Potsdam 2001), Madurese prolepsis (Davies 2005), and Sundanese prolepsis (Kurniawan 2011). What is conspicuously missing in this picture of Formosan RTO is a strategy that involves actual syntactic movement out of CPs. Only a handful of languages with RTO-like phenomena have been argued to involve syntactic movement of an XP out of finite CPs (e.g., Japanese: Kuno 1976 and Tanaka 2002; Korean: Yoon 2007; Romanian: Alboiu and Hill 2013; and Zulu: Halpert and Zeller to appear). The lack of actual raising out of finite CPs in typologically and geographically diverse
languages, including the three Formosan languages examined in the this study, suggests the pervasiveness of the generalization that A-movement out of finite CPs is prohibited (e.g., Tensed-S Condition; Chomsky 1973), and seems to be consistent with the intuition that finite CPs form an independent and complete unit with respect to syntactic operations (Phase Impenetrability Condition (Chomsky 2000, 2001, 2008)). The existence of the languages that arguably do allow A-movement out of finite CPs, on the other hand, raises the question of under what circumstances a language may allow such an operation.4

References

4 According to Bruening (2001), Passamaquoddy RTO may be added to this list, as it arguably utilizes two different strategies in establishing the XP-YP relation, one of which involves an XP base-generated at the left edge of the CP and undergoing A-movement to the matrix domain.